Run
8413

Run 8413

Task 96 (Supervised Classification) credit-a Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TEST2a9463e1cfsklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_tra nsformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=skle arn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoder s.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testin g.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)) ,VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceTh reshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estima tor=sklearn.neighbors._classification.KNeighborsClassifier))(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TEST2a9463e1cfsklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)),VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier))(1)_memorynull
TEST2a9463e1cfsklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)),VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "VarianceThreshold", "step_name": "VarianceThreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "Estimator", "step_name": "Estimator"}}]
TEST2a9463e1cfsklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)),VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier))(1)_verbosefalse
TEST2a9463e1cfsklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_n_jobsnull
TEST2a9463e1cfsklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_remainder"drop"
TEST2a9463e1cfsklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_sparse_threshold0.3
TEST2a9463e1cfsklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_transformer_weightsnull
TEST2a9463e1cfsklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "cont", "step_name": "cont", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}]
TEST2a9463e1cfsklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_verbosefalse
TEST2a9463e1cfsklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TEST2a9463e1cfsklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TEST2a9463e1cfsklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TEST2a9463e1cfsklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TEST2a9463e1cfsklearn.impute._base.SimpleImputer(1)_copytrue
TEST2a9463e1cfsklearn.impute._base.SimpleImputer(1)_fill_valuenull
TEST2a9463e1cfsklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TEST2a9463e1cfsklearn.impute._base.SimpleImputer(1)_strategy"most_frequent"
TEST2a9463e1cfsklearn.impute._base.SimpleImputer(1)_verbose0
TEST2a9463e1cfsklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TEST2a9463e1cfsklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TEST2a9463e1cfsklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TEST2a9463e1cfsklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TEST2a9463e1cfsklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TEST2a9463e1cfsklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TEST2a9463e1cfsklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TEST2a9463e1cfsklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TEST2a9463e1cfopenml.testing.CustomImputer(1)_add_indicatorfalse
TEST2a9463e1cfopenml.testing.CustomImputer(1)_copytrue
TEST2a9463e1cfopenml.testing.CustomImputer(1)_fill_valuenull
TEST2a9463e1cfopenml.testing.CustomImputer(1)_missing_valuesNaN
TEST2a9463e1cfopenml.testing.CustomImputer(1)_strategy"mean"
TEST2a9463e1cfopenml.testing.CustomImputer(1)_verbose0
TEST2a9463e1cfsklearn.preprocessing._data.StandardScaler(1)_copytrue
TEST2a9463e1cfsklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TEST2a9463e1cfsklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TEST2a9463e1cfsklearn.feature_selection._variance_threshold.VarianceThreshold(1)_threshold0.0
TEST2a9463e1cfsklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_cv3
TEST2a9463e1cfsklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_error_scoreNaN
TEST2a9463e1cfsklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_n_iter10
TEST2a9463e1cfsklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_n_jobsnull
TEST2a9463e1cfsklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_param_distributions{"n_neighbors": [2, 3, 4, 5, 6, 7, 8, 9]}
TEST2a9463e1cfsklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_pre_dispatch"2*n_jobs"
TEST2a9463e1cfsklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_random_state62501
TEST2a9463e1cfsklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_refittrue
TEST2a9463e1cfsklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_return_train_scorefalse
TEST2a9463e1cfsklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_scoringnull
TEST2a9463e1cfsklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_verbose0
TEST2a9463e1cfsklearn.neighbors._classification.KNeighborsClassifier(1)_algorithm"auto"
TEST2a9463e1cfsklearn.neighbors._classification.KNeighborsClassifier(1)_leaf_size30
TEST2a9463e1cfsklearn.neighbors._classification.KNeighborsClassifier(1)_metric"minkowski"
TEST2a9463e1cfsklearn.neighbors._classification.KNeighborsClassifier(1)_metric_paramsnull
TEST2a9463e1cfsklearn.neighbors._classification.KNeighborsClassifier(1)_n_jobsnull
TEST2a9463e1cfsklearn.neighbors._classification.KNeighborsClassifier(1)_n_neighbors5
TEST2a9463e1cfsklearn.neighbors._classification.KNeighborsClassifier(1)_p2
TEST2a9463e1cfsklearn.neighbors._classification.KNeighborsClassifier(1)_weights"uniform"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures