Run
8441

Run 8441

Task 801 (Learning Curve) diabetes Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TESTec386a79e6sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.Simple Imputer,VarianceThreshold=sklearn.feature_selection._variance_threshold.Var ianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV (estimator=sklearn.tree._classes.DecisionTreeClassifier))(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TESTec386a79e6sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier))(1)_memorynull
TESTec386a79e6sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "VarianceThreshold", "step_name": "VarianceThreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "Estimator", "step_name": "Estimator"}}]
TESTec386a79e6sklearn.pipeline.Pipeline(Imputer=sklearn.impute._base.SimpleImputer,VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier))(1)_verbosefalse
TESTec386a79e6sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TESTec386a79e6sklearn.impute._base.SimpleImputer(1)_copytrue
TESTec386a79e6sklearn.impute._base.SimpleImputer(1)_fill_valuenull
TESTec386a79e6sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TESTec386a79e6sklearn.impute._base.SimpleImputer(1)_strategy"median"
TESTec386a79e6sklearn.impute._base.SimpleImputer(1)_verbose0
TESTec386a79e6sklearn.feature_selection._variance_threshold.VarianceThreshold(1)_threshold0.0
TESTec386a79e6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_cv3
TESTec386a79e6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_error_scoreNaN
TESTec386a79e6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_iid"deprecated"
TESTec386a79e6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_n_iter10
TESTec386a79e6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_n_jobsnull
TESTec386a79e6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_param_distributions{"min_samples_leaf": [1, 2, 4, 8, 16, 32, 64], "min_samples_split": [2, 4, 8, 16, 32, 64, 128]}
TESTec386a79e6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_pre_dispatch"2*n_jobs"
TESTec386a79e6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_random_state33003
TESTec386a79e6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_refittrue
TESTec386a79e6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_return_train_scorefalse
TESTec386a79e6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_scoringnull
TESTec386a79e6sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbose0
TESTec386a79e6sklearn.tree._classes.DecisionTreeClassifier(1)_ccp_alpha0.0
TESTec386a79e6sklearn.tree._classes.DecisionTreeClassifier(1)_class_weightnull
TESTec386a79e6sklearn.tree._classes.DecisionTreeClassifier(1)_criterion"gini"
TESTec386a79e6sklearn.tree._classes.DecisionTreeClassifier(1)_max_depthnull
TESTec386a79e6sklearn.tree._classes.DecisionTreeClassifier(1)_max_featuresnull
TESTec386a79e6sklearn.tree._classes.DecisionTreeClassifier(1)_max_leaf_nodesnull
TESTec386a79e6sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TESTec386a79e6sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_splitnull
TESTec386a79e6sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_leaf1
TESTec386a79e6sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_split2
TESTec386a79e6sklearn.tree._classes.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TESTec386a79e6sklearn.tree._classes.DecisionTreeClassifier(1)_presort"deprecated"
TESTec386a79e6sklearn.tree._classes.DecisionTreeClassifier(1)_random_state62501
TESTec386a79e6sklearn.tree._classes.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8109 ± 0.0386
Per class
0.7383 ± 0.0432
Per class
0.4175 ± 0.0983
0.3291 ± 0.0605
0.305 ± 0.026
0.4545 ± 0.0015
0.7422 ± 0.0393
768
Per class
0.7368 ± 0.0413
Per class
0.7422 ± 0.0393
0.9331 ± 0.0046
0.6711 ± 0.0566
0.4766 ± 0.0016
0.4093 ± 0.0263
0.8588 ± 0.0541
0.7033 ± 0.0515