Run
8456

Run 8456

Task 119 (Supervised Classification) diabetes Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TESTf0484c3460sklearn.pipeline.Pipeline(transformer=sklearn.compose._column _transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimpu ter=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing ._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=open ml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneH otEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TESTf0484c3460sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
TESTf0484c3460sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "transformer", "step_name": "transformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
TESTf0484c3460sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse
TESTf0484c3460sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
TESTf0484c3460sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
TESTf0484c3460sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
TESTf0484c3460sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
TESTf0484c3460sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [0, 1, 2, 3, 4, 5, 6, 7]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": []}}]
TESTf0484c3460sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_verbosefalse
TESTf0484c3460sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TESTf0484c3460sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TESTf0484c3460sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TESTf0484c3460sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TESTf0484c3460sklearn.impute._base.SimpleImputer(1)_copytrue
TESTf0484c3460sklearn.impute._base.SimpleImputer(1)_fill_valuenull
TESTf0484c3460sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TESTf0484c3460sklearn.impute._base.SimpleImputer(1)_strategy"mean"
TESTf0484c3460sklearn.impute._base.SimpleImputer(1)_verbose0
TESTf0484c3460sklearn.preprocessing._data.StandardScaler(1)_copytrue
TESTf0484c3460sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TESTf0484c3460sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TESTf0484c3460sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TESTf0484c3460sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TESTf0484c3460sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TESTf0484c3460openml.testing.CustomImputer(1)_add_indicatorfalse
TESTf0484c3460openml.testing.CustomImputer(1)_copytrue
TESTf0484c3460openml.testing.CustomImputer(1)_fill_valuenull
TESTf0484c3460openml.testing.CustomImputer(1)_missing_valuesNaN
TESTf0484c3460openml.testing.CustomImputer(1)_strategy"most_frequent"
TESTf0484c3460openml.testing.CustomImputer(1)_verbose0
TESTf0484c3460sklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TESTf0484c3460sklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TESTf0484c3460sklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TESTf0484c3460sklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TESTf0484c3460sklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TESTf0484c3460sklearn.tree._classes.DecisionTreeClassifier(1)_ccp_alpha0.0
TESTf0484c3460sklearn.tree._classes.DecisionTreeClassifier(1)_class_weightnull
TESTf0484c3460sklearn.tree._classes.DecisionTreeClassifier(1)_criterion"gini"
TESTf0484c3460sklearn.tree._classes.DecisionTreeClassifier(1)_max_depthnull
TESTf0484c3460sklearn.tree._classes.DecisionTreeClassifier(1)_max_featuresnull
TESTf0484c3460sklearn.tree._classes.DecisionTreeClassifier(1)_max_leaf_nodesnull
TESTf0484c3460sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TESTf0484c3460sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_splitnull
TESTf0484c3460sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_leaf1
TESTf0484c3460sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_split2
TESTf0484c3460sklearn.tree._classes.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TESTf0484c3460sklearn.tree._classes.DecisionTreeClassifier(1)_random_state62501
TESTf0484c3460sklearn.tree._classes.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures