Run
8498

Run 8498

Task 801 (Learning Curve) diabetes Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TESTac735e80b3sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imput ation.Imputer,VarianceThreshold=sklearn.feature_selection.variance_threshol d.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSea rchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier))(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
TESTac735e80b3sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,VarianceThreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier))(1)_memorynull
TESTac735e80b3sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,VarianceThreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "VarianceThreshold", "step_name": "VarianceThreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "Estimator", "step_name": "Estimator"}}]
TESTac735e80b3sklearn.preprocessing.imputation.Imputer(1)_axis0
TESTac735e80b3sklearn.preprocessing.imputation.Imputer(1)_copytrue
TESTac735e80b3sklearn.preprocessing.imputation.Imputer(1)_missing_values"NaN"
TESTac735e80b3sklearn.preprocessing.imputation.Imputer(1)_strategy"median"
TESTac735e80b3sklearn.preprocessing.imputation.Imputer(1)_verbose0
TESTac735e80b3sklearn.feature_selection.variance_threshold.VarianceThreshold(1)_threshold0.0
TESTac735e80b3sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_cv3
TESTac735e80b3sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_error_score"raise"
TESTac735e80b3sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_fit_paramsnull
TESTac735e80b3sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_iidtrue
TESTac735e80b3sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_n_iter10
TESTac735e80b3sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_n_jobs1
TESTac735e80b3sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_param_distributions{"min_samples_leaf": [1, 2, 4, 8, 16, 32, 64], "min_samples_split": [2, 4, 8, 16, 32, 64, 128]}
TESTac735e80b3sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_pre_dispatch"2*n_jobs"
TESTac735e80b3sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_random_state33003
TESTac735e80b3sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_refittrue
TESTac735e80b3sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_return_train_score"warn"
TESTac735e80b3sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_scoringnull
TESTac735e80b3sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_verbose0
TESTac735e80b3sklearn.tree.tree.DecisionTreeClassifier(1)_class_weightnull
TESTac735e80b3sklearn.tree.tree.DecisionTreeClassifier(1)_criterion"gini"
TESTac735e80b3sklearn.tree.tree.DecisionTreeClassifier(1)_max_depthnull
TESTac735e80b3sklearn.tree.tree.DecisionTreeClassifier(1)_max_featuresnull
TESTac735e80b3sklearn.tree.tree.DecisionTreeClassifier(1)_max_leaf_nodesnull
TESTac735e80b3sklearn.tree.tree.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TESTac735e80b3sklearn.tree.tree.DecisionTreeClassifier(1)_min_impurity_splitnull
TESTac735e80b3sklearn.tree.tree.DecisionTreeClassifier(1)_min_samples_leaf1
TESTac735e80b3sklearn.tree.tree.DecisionTreeClassifier(1)_min_samples_split2
TESTac735e80b3sklearn.tree.tree.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TESTac735e80b3sklearn.tree.tree.DecisionTreeClassifier(1)_presortfalse
TESTac735e80b3sklearn.tree.tree.DecisionTreeClassifier(1)_random_state62501
TESTac735e80b3sklearn.tree.tree.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8109 ± 0.0386
Per class
0.7383 ± 0.0432
Per class
0.4175 ± 0.0983
0.3291 ± 0.0605
0.305 ± 0.026
0.4545 ± 0.0015
0.7422 ± 0.0393
768
Per class
0.7368 ± 0.0413
Per class
0.7422 ± 0.0393
0.9331 ± 0.0046
0.6711 ± 0.0566
0.4766 ± 0.0016
0.4093 ± 0.0263
0.8588 ± 0.0541
0.7033 ± 0.0515