Run
8555

Run 8555

Task 96 (Supervised Classification) credit-a Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TEST424e47a76esklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_tra nsformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=skle arn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoder s.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testin g.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)) ,VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceTh reshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estima tor=sklearn.neighbors._classification.KNeighborsClassifier))(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TEST424e47a76esklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)),VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier))(1)_memorynull
TEST424e47a76esklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)),VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "VarianceThreshold", "step_name": "VarianceThreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "Estimator", "step_name": "Estimator"}}]
TEST424e47a76esklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)),VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier))(1)_verbosefalse
TEST424e47a76esklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_n_jobsnull
TEST424e47a76esklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_remainder"drop"
TEST424e47a76esklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_sparse_threshold0.3
TEST424e47a76esklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_transformer_weightsnull
TEST424e47a76esklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "cont", "step_name": "cont", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}]
TEST424e47a76esklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_verbosefalse
TEST424e47a76esklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TEST424e47a76esklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TEST424e47a76esklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TEST424e47a76esklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TEST424e47a76esklearn.impute._base.SimpleImputer(1)_copytrue
TEST424e47a76esklearn.impute._base.SimpleImputer(1)_fill_valuenull
TEST424e47a76esklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TEST424e47a76esklearn.impute._base.SimpleImputer(1)_strategy"most_frequent"
TEST424e47a76esklearn.impute._base.SimpleImputer(1)_verbose0
TEST424e47a76esklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TEST424e47a76esklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TEST424e47a76esklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TEST424e47a76esklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TEST424e47a76esklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TEST424e47a76esklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TEST424e47a76esklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TEST424e47a76esklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TEST424e47a76eopenml.testing.CustomImputer(1)_add_indicatorfalse
TEST424e47a76eopenml.testing.CustomImputer(1)_copytrue
TEST424e47a76eopenml.testing.CustomImputer(1)_fill_valuenull
TEST424e47a76eopenml.testing.CustomImputer(1)_missing_valuesNaN
TEST424e47a76eopenml.testing.CustomImputer(1)_strategy"mean"
TEST424e47a76eopenml.testing.CustomImputer(1)_verbose0
TEST424e47a76esklearn.preprocessing._data.StandardScaler(1)_copytrue
TEST424e47a76esklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TEST424e47a76esklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TEST424e47a76esklearn.feature_selection._variance_threshold.VarianceThreshold(1)_threshold0.0
TEST424e47a76esklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_cv3
TEST424e47a76esklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_error_scoreNaN
TEST424e47a76esklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_n_iter10
TEST424e47a76esklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_n_jobsnull
TEST424e47a76esklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_param_distributions{"n_neighbors": [2, 3, 4, 5, 6, 7, 8, 9]}
TEST424e47a76esklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_pre_dispatch"2*n_jobs"
TEST424e47a76esklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_random_state62501
TEST424e47a76esklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_refittrue
TEST424e47a76esklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_return_train_scorefalse
TEST424e47a76esklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_scoringnull
TEST424e47a76esklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_verbose0
TEST424e47a76esklearn.neighbors._classification.KNeighborsClassifier(1)_algorithm"auto"
TEST424e47a76esklearn.neighbors._classification.KNeighborsClassifier(1)_leaf_size30
TEST424e47a76esklearn.neighbors._classification.KNeighborsClassifier(1)_metric"minkowski"
TEST424e47a76esklearn.neighbors._classification.KNeighborsClassifier(1)_metric_paramsnull
TEST424e47a76esklearn.neighbors._classification.KNeighborsClassifier(1)_n_jobsnull
TEST424e47a76esklearn.neighbors._classification.KNeighborsClassifier(1)_n_neighbors5
TEST424e47a76esklearn.neighbors._classification.KNeighborsClassifier(1)_p2
TEST424e47a76esklearn.neighbors._classification.KNeighborsClassifier(1)_weights"uniform"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures