Run
8853

Run 8853

Task 115 (Supervised Classification) diabetes Uploaded 04-03-2021 by Test Test
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.24.1. study_1165
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(1)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(1)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(1)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(1)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(1)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(1)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(1)_max_features"auto"
sklearn.ensemble._forest.RandomForestClassifier(1)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(1)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(1)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(1)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(1)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(1)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(1)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(1)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(1)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(1)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(1)_random_state13292
sklearn.ensemble._forest.RandomForestClassifier(1)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(1)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8266 ± 0.0428
Per class
Cross-validation details (10-fold Crossvalidation)
0.7648 ± 0.0529
Per class
Cross-validation details (10-fold Crossvalidation)
0.4738 ± 0.1187
Cross-validation details (10-fold Crossvalidation)
0.3112 ± 0.0621
Cross-validation details (10-fold Crossvalidation)
0.3184 ± 0.0229
Cross-validation details (10-fold Crossvalidation)
0.4545 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.7708 ± 0.0506
Cross-validation details (10-fold Crossvalidation)
768
Per class
Cross-validation details (10-fold Crossvalidation)
0.7654 ± 0.0554
Per class
Cross-validation details (10-fold Crossvalidation)
0.7708 ± 0.0506
Cross-validation details (10-fold Crossvalidation)
0.9331 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.7006 ± 0.0505
Cross-validation details (10-fold Crossvalidation)
0.4766 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.3995 ± 0.0258
Cross-validation details (10-fold Crossvalidation)
0.8381 ± 0.0547
Cross-validation details (10-fold Crossvalidation)
0.727 ± 0.0566
Cross-validation details (10-fold Crossvalidation)