Run
8860

Run 8860

Task 259 (Supervised Classification) collins Uploaded 04-03-2021 by Test Test
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.24.1. study_1167
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(1)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(1)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(1)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(1)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(1)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(1)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(1)_max_features"auto"
sklearn.ensemble._forest.RandomForestClassifier(1)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(1)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(1)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(1)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(1)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(1)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(1)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(1)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(1)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(1)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(1)_random_state43979
sklearn.ensemble._forest.RandomForestClassifier(1)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(1)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9936 ± 0.0037
Per class
Cross-validation details (10-fold Crossvalidation)
0.8783 ± 0.0275
Per class
Cross-validation details (10-fold Crossvalidation)
0.874 ± 0.0536
Cross-validation details (10-fold Crossvalidation)
0.6653 ± 0.0197
Cross-validation details (10-fold Crossvalidation)
0.0695 ± 0.0026
Cross-validation details (10-fold Crossvalidation)
0.1212 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.886 ± 0.0481
Cross-validation details (10-fold Crossvalidation)
500
Per class
Cross-validation details (10-fold Crossvalidation)
0.883 ± 0.0289
Per class
Cross-validation details (10-fold Crossvalidation)
0.886 ± 0.0481
Cross-validation details (10-fold Crossvalidation)
3.6489 ± 0.0337
Cross-validation details (10-fold Crossvalidation)
0.5737 ± 0.0215
Cross-validation details (10-fold Crossvalidation)
0.246 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.1583 ± 0.0059
Cross-validation details (10-fold Crossvalidation)
0.6434 ± 0.0242
Cross-validation details (10-fold Crossvalidation)
0.7772 ± 0.0488
Cross-validation details (10-fold Crossvalidation)