Run
9059

Run 9059

Task 96 (Supervised Classification) credit-a Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TESTd20deb4aa7sklearn.pipeline.Pipeline(transformer=sklearn.compose._column _transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimpu ter=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing ._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=open ml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneH otEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TESTd20deb4aa7sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
TESTd20deb4aa7sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "transformer", "step_name": "transformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
TESTd20deb4aa7sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse
TESTd20deb4aa7sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
TESTd20deb4aa7sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
TESTd20deb4aa7sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
TESTd20deb4aa7sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
TESTd20deb4aa7sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [1, 2, 7, 10, 13, 14]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": [0, 3, 4, 5, 6, 8, 9, 11, 12]}}]
TESTd20deb4aa7sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_verbosefalse
TESTd20deb4aa7sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TESTd20deb4aa7sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TESTd20deb4aa7sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TESTd20deb4aa7sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TESTd20deb4aa7sklearn.impute._base.SimpleImputer(1)_copytrue
TESTd20deb4aa7sklearn.impute._base.SimpleImputer(1)_fill_valuenull
TESTd20deb4aa7sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TESTd20deb4aa7sklearn.impute._base.SimpleImputer(1)_strategy"mean"
TESTd20deb4aa7sklearn.impute._base.SimpleImputer(1)_verbose0
TESTd20deb4aa7sklearn.preprocessing._data.StandardScaler(1)_copytrue
TESTd20deb4aa7sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TESTd20deb4aa7sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TESTd20deb4aa7sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TESTd20deb4aa7sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TESTd20deb4aa7sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TESTd20deb4aa7openml.testing.CustomImputer(1)_add_indicatorfalse
TESTd20deb4aa7openml.testing.CustomImputer(1)_copytrue
TESTd20deb4aa7openml.testing.CustomImputer(1)_fill_valuenull
TESTd20deb4aa7openml.testing.CustomImputer(1)_missing_valuesNaN
TESTd20deb4aa7openml.testing.CustomImputer(1)_strategy"most_frequent"
TESTd20deb4aa7openml.testing.CustomImputer(1)_verbose0
TESTd20deb4aa7sklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TESTd20deb4aa7sklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TESTd20deb4aa7sklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TESTd20deb4aa7sklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TESTd20deb4aa7sklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TESTd20deb4aa7sklearn.tree._classes.DecisionTreeClassifier(1)_ccp_alpha0.0
TESTd20deb4aa7sklearn.tree._classes.DecisionTreeClassifier(1)_class_weightnull
TESTd20deb4aa7sklearn.tree._classes.DecisionTreeClassifier(1)_criterion"gini"
TESTd20deb4aa7sklearn.tree._classes.DecisionTreeClassifier(1)_max_depthnull
TESTd20deb4aa7sklearn.tree._classes.DecisionTreeClassifier(1)_max_featuresnull
TESTd20deb4aa7sklearn.tree._classes.DecisionTreeClassifier(1)_max_leaf_nodesnull
TESTd20deb4aa7sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TESTd20deb4aa7sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_splitnull
TESTd20deb4aa7sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_leaf1
TESTd20deb4aa7sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_split2
TESTd20deb4aa7sklearn.tree._classes.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TESTd20deb4aa7sklearn.tree._classes.DecisionTreeClassifier(1)_random_state62501
TESTd20deb4aa7sklearn.tree._classes.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures