Run
9082

Run 9082

Task 96 (Supervised Classification) credit-a Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TEST4f4cf27002sklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_tra nsformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=skle arn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoder s.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testin g.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)) ,VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceTh reshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estima tor=sklearn.neighbors._classification.KNeighborsClassifier))(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TEST4f4cf27002sklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)),VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier))(1)_memorynull
TEST4f4cf27002sklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)),VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "VarianceThreshold", "step_name": "VarianceThreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "Estimator", "step_name": "Estimator"}}]
TEST4f4cf27002sklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)),VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier))(1)_verbosefalse
TEST4f4cf27002sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_n_jobsnull
TEST4f4cf27002sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_remainder"drop"
TEST4f4cf27002sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_sparse_threshold0.3
TEST4f4cf27002sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_transformer_weightsnull
TEST4f4cf27002sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "cont", "step_name": "cont", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}]
TEST4f4cf27002sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_verbosefalse
TEST4f4cf27002sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TEST4f4cf27002sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TEST4f4cf27002sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TEST4f4cf27002sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TEST4f4cf27002sklearn.impute._base.SimpleImputer(1)_copytrue
TEST4f4cf27002sklearn.impute._base.SimpleImputer(1)_fill_valuenull
TEST4f4cf27002sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TEST4f4cf27002sklearn.impute._base.SimpleImputer(1)_strategy"most_frequent"
TEST4f4cf27002sklearn.impute._base.SimpleImputer(1)_verbose0
TEST4f4cf27002sklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TEST4f4cf27002sklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TEST4f4cf27002sklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TEST4f4cf27002sklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TEST4f4cf27002sklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TEST4f4cf27002sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TEST4f4cf27002sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TEST4f4cf27002sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TEST4f4cf27002openml.testing.CustomImputer(1)_add_indicatorfalse
TEST4f4cf27002openml.testing.CustomImputer(1)_copytrue
TEST4f4cf27002openml.testing.CustomImputer(1)_fill_valuenull
TEST4f4cf27002openml.testing.CustomImputer(1)_missing_valuesNaN
TEST4f4cf27002openml.testing.CustomImputer(1)_strategy"mean"
TEST4f4cf27002openml.testing.CustomImputer(1)_verbose0
TEST4f4cf27002sklearn.preprocessing._data.StandardScaler(1)_copytrue
TEST4f4cf27002sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TEST4f4cf27002sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TEST4f4cf27002sklearn.feature_selection._variance_threshold.VarianceThreshold(1)_threshold0.0
TEST4f4cf27002sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_cv3
TEST4f4cf27002sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_error_scoreNaN
TEST4f4cf27002sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_iid"deprecated"
TEST4f4cf27002sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_n_iter10
TEST4f4cf27002sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_n_jobsnull
TEST4f4cf27002sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_param_distributions{"n_neighbors": [2, 3, 4, 5, 6, 7, 8, 9]}
TEST4f4cf27002sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_pre_dispatch"2*n_jobs"
TEST4f4cf27002sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_random_state62501
TEST4f4cf27002sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_refittrue
TEST4f4cf27002sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_return_train_scorefalse
TEST4f4cf27002sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_scoringnull
TEST4f4cf27002sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_verbose0
TEST4f4cf27002sklearn.neighbors._classification.KNeighborsClassifier(1)_algorithm"auto"
TEST4f4cf27002sklearn.neighbors._classification.KNeighborsClassifier(1)_leaf_size30
TEST4f4cf27002sklearn.neighbors._classification.KNeighborsClassifier(1)_metric"minkowski"
TEST4f4cf27002sklearn.neighbors._classification.KNeighborsClassifier(1)_metric_paramsnull
TEST4f4cf27002sklearn.neighbors._classification.KNeighborsClassifier(1)_n_jobsnull
TEST4f4cf27002sklearn.neighbors._classification.KNeighborsClassifier(1)_n_neighbors5
TEST4f4cf27002sklearn.neighbors._classification.KNeighborsClassifier(1)_p2
TEST4f4cf27002sklearn.neighbors._classification.KNeighborsClassifier(1)_weights"uniform"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures