Run
9086

Run 9086

Task 119 (Supervised Classification) diabetes Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TEST04b59c85c8sklearn.pipeline.Pipeline(transformer=sklearn.compose._column _transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimpu ter=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing ._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=open ml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneH otEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TEST04b59c85c8sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
TEST04b59c85c8sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "transformer", "step_name": "transformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
TEST04b59c85c8sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse
TEST04b59c85c8sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
TEST04b59c85c8sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
TEST04b59c85c8sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
TEST04b59c85c8sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
TEST04b59c85c8sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [0, 1, 2, 3, 4, 5, 6, 7]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": []}}]
TEST04b59c85c8sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_verbosefalse
TEST04b59c85c8sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TEST04b59c85c8sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TEST04b59c85c8sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TEST04b59c85c8sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TEST04b59c85c8sklearn.impute._base.SimpleImputer(1)_copytrue
TEST04b59c85c8sklearn.impute._base.SimpleImputer(1)_fill_valuenull
TEST04b59c85c8sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TEST04b59c85c8sklearn.impute._base.SimpleImputer(1)_strategy"mean"
TEST04b59c85c8sklearn.impute._base.SimpleImputer(1)_verbose0
TEST04b59c85c8sklearn.preprocessing._data.StandardScaler(1)_copytrue
TEST04b59c85c8sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TEST04b59c85c8sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TEST04b59c85c8sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TEST04b59c85c8sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TEST04b59c85c8sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TEST04b59c85c8openml.testing.CustomImputer(1)_add_indicatorfalse
TEST04b59c85c8openml.testing.CustomImputer(1)_copytrue
TEST04b59c85c8openml.testing.CustomImputer(1)_fill_valuenull
TEST04b59c85c8openml.testing.CustomImputer(1)_missing_valuesNaN
TEST04b59c85c8openml.testing.CustomImputer(1)_strategy"most_frequent"
TEST04b59c85c8openml.testing.CustomImputer(1)_verbose0
TEST04b59c85c8sklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TEST04b59c85c8sklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TEST04b59c85c8sklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TEST04b59c85c8sklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TEST04b59c85c8sklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TEST04b59c85c8sklearn.tree._classes.DecisionTreeClassifier(1)_ccp_alpha0.0
TEST04b59c85c8sklearn.tree._classes.DecisionTreeClassifier(1)_class_weightnull
TEST04b59c85c8sklearn.tree._classes.DecisionTreeClassifier(1)_criterion"gini"
TEST04b59c85c8sklearn.tree._classes.DecisionTreeClassifier(1)_max_depthnull
TEST04b59c85c8sklearn.tree._classes.DecisionTreeClassifier(1)_max_featuresnull
TEST04b59c85c8sklearn.tree._classes.DecisionTreeClassifier(1)_max_leaf_nodesnull
TEST04b59c85c8sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TEST04b59c85c8sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_splitnull
TEST04b59c85c8sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_leaf1
TEST04b59c85c8sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_split2
TEST04b59c85c8sklearn.tree._classes.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TEST04b59c85c8sklearn.tree._classes.DecisionTreeClassifier(1)_random_state62501
TEST04b59c85c8sklearn.tree._classes.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures