Run
9089

Run 9089

Task 119 (Supervised Classification) diabetes Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TESTe98dd55c64sklearn.pipeline.Pipeline(transformer=sklearn.compose._column _transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimpu ter=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing ._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=open ml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneH otEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TESTe98dd55c64sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
TESTe98dd55c64sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "transformer", "step_name": "transformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
TESTe98dd55c64sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse
TESTe98dd55c64sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
TESTe98dd55c64sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
TESTe98dd55c64sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
TESTe98dd55c64sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
TESTe98dd55c64sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [0, 1, 2, 3, 4, 5, 6, 7]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": []}}]
TESTe98dd55c64sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_verbosefalse
TESTe98dd55c64sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TESTe98dd55c64sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TESTe98dd55c64sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TESTe98dd55c64sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TESTe98dd55c64sklearn.impute._base.SimpleImputer(1)_copytrue
TESTe98dd55c64sklearn.impute._base.SimpleImputer(1)_fill_valuenull
TESTe98dd55c64sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TESTe98dd55c64sklearn.impute._base.SimpleImputer(1)_strategy"mean"
TESTe98dd55c64sklearn.impute._base.SimpleImputer(1)_verbose0
TESTe98dd55c64sklearn.preprocessing._data.StandardScaler(1)_copytrue
TESTe98dd55c64sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TESTe98dd55c64sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TESTe98dd55c64sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TESTe98dd55c64sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TESTe98dd55c64sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TESTe98dd55c64openml.testing.CustomImputer(1)_add_indicatorfalse
TESTe98dd55c64openml.testing.CustomImputer(1)_copytrue
TESTe98dd55c64openml.testing.CustomImputer(1)_fill_valuenull
TESTe98dd55c64openml.testing.CustomImputer(1)_missing_valuesNaN
TESTe98dd55c64openml.testing.CustomImputer(1)_strategy"most_frequent"
TESTe98dd55c64openml.testing.CustomImputer(1)_verbose0
TESTe98dd55c64sklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TESTe98dd55c64sklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TESTe98dd55c64sklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TESTe98dd55c64sklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TESTe98dd55c64sklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TESTe98dd55c64sklearn.tree._classes.DecisionTreeClassifier(1)_ccp_alpha0.0
TESTe98dd55c64sklearn.tree._classes.DecisionTreeClassifier(1)_class_weightnull
TESTe98dd55c64sklearn.tree._classes.DecisionTreeClassifier(1)_criterion"gini"
TESTe98dd55c64sklearn.tree._classes.DecisionTreeClassifier(1)_max_depthnull
TESTe98dd55c64sklearn.tree._classes.DecisionTreeClassifier(1)_max_featuresnull
TESTe98dd55c64sklearn.tree._classes.DecisionTreeClassifier(1)_max_leaf_nodesnull
TESTe98dd55c64sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TESTe98dd55c64sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_splitnull
TESTe98dd55c64sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_leaf1
TESTe98dd55c64sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_split2
TESTe98dd55c64sklearn.tree._classes.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TESTe98dd55c64sklearn.tree._classes.DecisionTreeClassifier(1)_random_state62501
TESTe98dd55c64sklearn.tree._classes.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures