Run
9145

Run 9145

Task 119 (Supervised Classification) diabetes Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TESTf2ab954fcbsklearn.pipeline.Pipeline(transformer=sklearn.compose._column _transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimpu ter=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing ._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=open ml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneH otEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TESTf2ab954fcbsklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
TESTf2ab954fcbsklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "transformer", "step_name": "transformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
TESTf2ab954fcbsklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse
TESTf2ab954fcbsklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
TESTf2ab954fcbsklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
TESTf2ab954fcbsklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
TESTf2ab954fcbsklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
TESTf2ab954fcbsklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [0, 1, 2, 3, 4, 5, 6, 7]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": []}}]
TESTf2ab954fcbsklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_verbosefalse
TESTf2ab954fcbsklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TESTf2ab954fcbsklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TESTf2ab954fcbsklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TESTf2ab954fcbsklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TESTf2ab954fcbsklearn.impute._base.SimpleImputer(1)_copytrue
TESTf2ab954fcbsklearn.impute._base.SimpleImputer(1)_fill_valuenull
TESTf2ab954fcbsklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TESTf2ab954fcbsklearn.impute._base.SimpleImputer(1)_strategy"mean"
TESTf2ab954fcbsklearn.impute._base.SimpleImputer(1)_verbose0
TESTf2ab954fcbsklearn.preprocessing._data.StandardScaler(1)_copytrue
TESTf2ab954fcbsklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TESTf2ab954fcbsklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TESTf2ab954fcbsklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TESTf2ab954fcbsklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TESTf2ab954fcbsklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TESTf2ab954fcbopenml.testing.CustomImputer(1)_add_indicatorfalse
TESTf2ab954fcbopenml.testing.CustomImputer(1)_copytrue
TESTf2ab954fcbopenml.testing.CustomImputer(1)_fill_valuenull
TESTf2ab954fcbopenml.testing.CustomImputer(1)_missing_valuesNaN
TESTf2ab954fcbopenml.testing.CustomImputer(1)_strategy"most_frequent"
TESTf2ab954fcbopenml.testing.CustomImputer(1)_verbose0
TESTf2ab954fcbsklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TESTf2ab954fcbsklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TESTf2ab954fcbsklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TESTf2ab954fcbsklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TESTf2ab954fcbsklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TESTf2ab954fcbsklearn.tree._classes.DecisionTreeClassifier(1)_ccp_alpha0.0
TESTf2ab954fcbsklearn.tree._classes.DecisionTreeClassifier(1)_class_weightnull
TESTf2ab954fcbsklearn.tree._classes.DecisionTreeClassifier(1)_criterion"gini"
TESTf2ab954fcbsklearn.tree._classes.DecisionTreeClassifier(1)_max_depthnull
TESTf2ab954fcbsklearn.tree._classes.DecisionTreeClassifier(1)_max_featuresnull
TESTf2ab954fcbsklearn.tree._classes.DecisionTreeClassifier(1)_max_leaf_nodesnull
TESTf2ab954fcbsklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TESTf2ab954fcbsklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_splitnull
TESTf2ab954fcbsklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_leaf1
TESTf2ab954fcbsklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_split2
TESTf2ab954fcbsklearn.tree._classes.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TESTf2ab954fcbsklearn.tree._classes.DecisionTreeClassifier(1)_random_state62501
TESTf2ab954fcbsklearn.tree._classes.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures