Run
9164

Run 9164

Task 96 (Supervised Classification) credit-a Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TEST39879c7c33sklearn.pipeline.Pipeline(transformer=sklearn.compose._column _transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimpu ter=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing ._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=open ml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneH otEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TEST39879c7c33sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
TEST39879c7c33sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "transformer", "step_name": "transformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
TEST39879c7c33sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse
TEST39879c7c33sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
TEST39879c7c33sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
TEST39879c7c33sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
TEST39879c7c33sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
TEST39879c7c33sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [1, 2, 7, 10, 13, 14]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": [0, 3, 4, 5, 6, 8, 9, 11, 12]}}]
TEST39879c7c33sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_verbosefalse
TEST39879c7c33sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TEST39879c7c33sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TEST39879c7c33sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TEST39879c7c33sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TEST39879c7c33sklearn.impute._base.SimpleImputer(1)_copytrue
TEST39879c7c33sklearn.impute._base.SimpleImputer(1)_fill_valuenull
TEST39879c7c33sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TEST39879c7c33sklearn.impute._base.SimpleImputer(1)_strategy"mean"
TEST39879c7c33sklearn.impute._base.SimpleImputer(1)_verbose0
TEST39879c7c33sklearn.preprocessing._data.StandardScaler(1)_copytrue
TEST39879c7c33sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TEST39879c7c33sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TEST39879c7c33sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TEST39879c7c33sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TEST39879c7c33sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TEST39879c7c33openml.testing.CustomImputer(1)_add_indicatorfalse
TEST39879c7c33openml.testing.CustomImputer(1)_copytrue
TEST39879c7c33openml.testing.CustomImputer(1)_fill_valuenull
TEST39879c7c33openml.testing.CustomImputer(1)_missing_valuesNaN
TEST39879c7c33openml.testing.CustomImputer(1)_strategy"most_frequent"
TEST39879c7c33openml.testing.CustomImputer(1)_verbose0
TEST39879c7c33sklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TEST39879c7c33sklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TEST39879c7c33sklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TEST39879c7c33sklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TEST39879c7c33sklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TEST39879c7c33sklearn.tree._classes.DecisionTreeClassifier(1)_ccp_alpha0.0
TEST39879c7c33sklearn.tree._classes.DecisionTreeClassifier(1)_class_weightnull
TEST39879c7c33sklearn.tree._classes.DecisionTreeClassifier(1)_criterion"gini"
TEST39879c7c33sklearn.tree._classes.DecisionTreeClassifier(1)_max_depthnull
TEST39879c7c33sklearn.tree._classes.DecisionTreeClassifier(1)_max_featuresnull
TEST39879c7c33sklearn.tree._classes.DecisionTreeClassifier(1)_max_leaf_nodesnull
TEST39879c7c33sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TEST39879c7c33sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_splitnull
TEST39879c7c33sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_leaf1
TEST39879c7c33sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_split2
TEST39879c7c33sklearn.tree._classes.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TEST39879c7c33sklearn.tree._classes.DecisionTreeClassifier(1)_random_state62501
TEST39879c7c33sklearn.tree._classes.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures