Run
9179

Run 9179

Task 96 (Supervised Classification) credit-a Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TEST39f4b1e814sklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_tra nsformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=skle arn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoder s.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testin g.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)) ,VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceTh reshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estima tor=sklearn.neighbors._classification.KNeighborsClassifier))(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TEST39f4b1e814sklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)),VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier))(1)_memorynull
TEST39f4b1e814sklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)),VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "VarianceThreshold", "step_name": "VarianceThreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "Estimator", "step_name": "Estimator"}}]
TEST39f4b1e814sklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)),VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier))(1)_verbosefalse
TEST39f4b1e814sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_n_jobsnull
TEST39f4b1e814sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_remainder"drop"
TEST39f4b1e814sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_sparse_threshold0.3
TEST39f4b1e814sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_transformer_weightsnull
TEST39f4b1e814sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "cont", "step_name": "cont", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}]
TEST39f4b1e814sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_verbosefalse
TEST39f4b1e814sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TEST39f4b1e814sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TEST39f4b1e814sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TEST39f4b1e814sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TEST39f4b1e814sklearn.impute._base.SimpleImputer(1)_copytrue
TEST39f4b1e814sklearn.impute._base.SimpleImputer(1)_fill_valuenull
TEST39f4b1e814sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TEST39f4b1e814sklearn.impute._base.SimpleImputer(1)_strategy"most_frequent"
TEST39f4b1e814sklearn.impute._base.SimpleImputer(1)_verbose0
TEST39f4b1e814sklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TEST39f4b1e814sklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TEST39f4b1e814sklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TEST39f4b1e814sklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TEST39f4b1e814sklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TEST39f4b1e814sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TEST39f4b1e814sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TEST39f4b1e814sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TEST39f4b1e814openml.testing.CustomImputer(1)_add_indicatorfalse
TEST39f4b1e814openml.testing.CustomImputer(1)_copytrue
TEST39f4b1e814openml.testing.CustomImputer(1)_fill_valuenull
TEST39f4b1e814openml.testing.CustomImputer(1)_missing_valuesNaN
TEST39f4b1e814openml.testing.CustomImputer(1)_strategy"mean"
TEST39f4b1e814openml.testing.CustomImputer(1)_verbose0
TEST39f4b1e814sklearn.preprocessing._data.StandardScaler(1)_copytrue
TEST39f4b1e814sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TEST39f4b1e814sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TEST39f4b1e814sklearn.feature_selection._variance_threshold.VarianceThreshold(1)_threshold0.0
TEST39f4b1e814sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_cv3
TEST39f4b1e814sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_error_scoreNaN
TEST39f4b1e814sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_iid"deprecated"
TEST39f4b1e814sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_n_iter10
TEST39f4b1e814sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_n_jobsnull
TEST39f4b1e814sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_param_distributions{"n_neighbors": [2, 3, 4, 5, 6, 7, 8, 9]}
TEST39f4b1e814sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_pre_dispatch"2*n_jobs"
TEST39f4b1e814sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_random_state62501
TEST39f4b1e814sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_refittrue
TEST39f4b1e814sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_return_train_scorefalse
TEST39f4b1e814sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_scoringnull
TEST39f4b1e814sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_verbose0
TEST39f4b1e814sklearn.neighbors._classification.KNeighborsClassifier(1)_algorithm"auto"
TEST39f4b1e814sklearn.neighbors._classification.KNeighborsClassifier(1)_leaf_size30
TEST39f4b1e814sklearn.neighbors._classification.KNeighborsClassifier(1)_metric"minkowski"
TEST39f4b1e814sklearn.neighbors._classification.KNeighborsClassifier(1)_metric_paramsnull
TEST39f4b1e814sklearn.neighbors._classification.KNeighborsClassifier(1)_n_jobsnull
TEST39f4b1e814sklearn.neighbors._classification.KNeighborsClassifier(1)_n_neighbors5
TEST39f4b1e814sklearn.neighbors._classification.KNeighborsClassifier(1)_p2
TEST39f4b1e814sklearn.neighbors._classification.KNeighborsClassifier(1)_weights"uniform"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures