Run
9211

Run 9211

Task 119 (Supervised Classification) diabetes Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TEST1f5702cb94sklearn.pipeline.Pipeline(transformer=sklearn.compose._column _transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimpu ter=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing ._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=open ml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneH otEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TEST1f5702cb94sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
TEST1f5702cb94sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "transformer", "step_name": "transformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
TEST1f5702cb94sklearn.pipeline.Pipeline(transformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),classifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse
TEST1f5702cb94sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
TEST1f5702cb94sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
TEST1f5702cb94sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
TEST1f5702cb94sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
TEST1f5702cb94sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [0, 1, 2, 3, 4, 5, 6, 7]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": []}}]
TEST1f5702cb94sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler),nominal=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_verbosefalse
TEST1f5702cb94sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TEST1f5702cb94sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TEST1f5702cb94sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TEST1f5702cb94sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TEST1f5702cb94sklearn.impute._base.SimpleImputer(1)_copytrue
TEST1f5702cb94sklearn.impute._base.SimpleImputer(1)_fill_valuenull
TEST1f5702cb94sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TEST1f5702cb94sklearn.impute._base.SimpleImputer(1)_strategy"mean"
TEST1f5702cb94sklearn.impute._base.SimpleImputer(1)_verbose0
TEST1f5702cb94sklearn.preprocessing._data.StandardScaler(1)_copytrue
TEST1f5702cb94sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TEST1f5702cb94sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TEST1f5702cb94sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TEST1f5702cb94sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TEST1f5702cb94sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TEST1f5702cb94openml.testing.CustomImputer(1)_add_indicatorfalse
TEST1f5702cb94openml.testing.CustomImputer(1)_copytrue
TEST1f5702cb94openml.testing.CustomImputer(1)_fill_valuenull
TEST1f5702cb94openml.testing.CustomImputer(1)_missing_valuesNaN
TEST1f5702cb94openml.testing.CustomImputer(1)_strategy"most_frequent"
TEST1f5702cb94openml.testing.CustomImputer(1)_verbose0
TEST1f5702cb94sklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TEST1f5702cb94sklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TEST1f5702cb94sklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TEST1f5702cb94sklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TEST1f5702cb94sklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TEST1f5702cb94sklearn.tree._classes.DecisionTreeClassifier(1)_ccp_alpha0.0
TEST1f5702cb94sklearn.tree._classes.DecisionTreeClassifier(1)_class_weightnull
TEST1f5702cb94sklearn.tree._classes.DecisionTreeClassifier(1)_criterion"gini"
TEST1f5702cb94sklearn.tree._classes.DecisionTreeClassifier(1)_max_depthnull
TEST1f5702cb94sklearn.tree._classes.DecisionTreeClassifier(1)_max_featuresnull
TEST1f5702cb94sklearn.tree._classes.DecisionTreeClassifier(1)_max_leaf_nodesnull
TEST1f5702cb94sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TEST1f5702cb94sklearn.tree._classes.DecisionTreeClassifier(1)_min_impurity_splitnull
TEST1f5702cb94sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_leaf1
TEST1f5702cb94sklearn.tree._classes.DecisionTreeClassifier(1)_min_samples_split2
TEST1f5702cb94sklearn.tree._classes.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TEST1f5702cb94sklearn.tree._classes.DecisionTreeClassifier(1)_random_state62501
TEST1f5702cb94sklearn.tree._classes.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures