Run
9223

Run 9223

Task 96 (Supervised Classification) credit-a Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TEST24ab22fd42sklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_tra nsformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=skle arn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoder s.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testin g.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)) ,VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceTh reshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estima tor=sklearn.neighbors._classification.KNeighborsClassifier))(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
TEST24ab22fd42sklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)),VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier))(1)_memorynull
TEST24ab22fd42sklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)),VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "VarianceThreshold", "step_name": "VarianceThreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "Estimator", "step_name": "Estimator"}}]
TEST24ab22fd42sklearn.pipeline.Pipeline(Imputer=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)),VarianceThreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier))(1)_verbosefalse
TEST24ab22fd42sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_n_jobsnull
TEST24ab22fd42sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_remainder"drop"
TEST24ab22fd42sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_sparse_threshold0.3
TEST24ab22fd42sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_transformer_weightsnull
TEST24ab22fd42sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cat"}}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "cont", "step_name": "cont", "argument_1": {"oml-python:serialized_object": "function", "value": "openml.extensions.sklearn.cont"}}}]
TEST24ab22fd42sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder),cont=sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler))(1)_verbosefalse
TEST24ab22fd42sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
TEST24ab22fd42sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
TEST24ab22fd42sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
TEST24ab22fd42sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
TEST24ab22fd42sklearn.impute._base.SimpleImputer(1)_copytrue
TEST24ab22fd42sklearn.impute._base.SimpleImputer(1)_fill_valuenull
TEST24ab22fd42sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
TEST24ab22fd42sklearn.impute._base.SimpleImputer(1)_strategy"most_frequent"
TEST24ab22fd42sklearn.impute._base.SimpleImputer(1)_verbose0
TEST24ab22fd42sklearn.preprocessing._encoders.OneHotEncoder(1)_categories"auto"
TEST24ab22fd42sklearn.preprocessing._encoders.OneHotEncoder(1)_dropnull
TEST24ab22fd42sklearn.preprocessing._encoders.OneHotEncoder(1)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
TEST24ab22fd42sklearn.preprocessing._encoders.OneHotEncoder(1)_handle_unknown"ignore"
TEST24ab22fd42sklearn.preprocessing._encoders.OneHotEncoder(1)_sparsetrue
TEST24ab22fd42sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
TEST24ab22fd42sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "customimputer", "step_name": "customimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
TEST24ab22fd42sklearn.pipeline.Pipeline(customimputer=openml.testing.CustomImputer,standardscaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse
TEST24ab22fd42openml.testing.CustomImputer(1)_add_indicatorfalse
TEST24ab22fd42openml.testing.CustomImputer(1)_copytrue
TEST24ab22fd42openml.testing.CustomImputer(1)_fill_valuenull
TEST24ab22fd42openml.testing.CustomImputer(1)_missing_valuesNaN
TEST24ab22fd42openml.testing.CustomImputer(1)_strategy"mean"
TEST24ab22fd42openml.testing.CustomImputer(1)_verbose0
TEST24ab22fd42sklearn.preprocessing._data.StandardScaler(1)_copytrue
TEST24ab22fd42sklearn.preprocessing._data.StandardScaler(1)_with_meantrue
TEST24ab22fd42sklearn.preprocessing._data.StandardScaler(1)_with_stdtrue
TEST24ab22fd42sklearn.feature_selection._variance_threshold.VarianceThreshold(1)_threshold0.0
TEST24ab22fd42sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_cv3
TEST24ab22fd42sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_error_scoreNaN
TEST24ab22fd42sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_iid"deprecated"
TEST24ab22fd42sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_n_iter10
TEST24ab22fd42sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_n_jobsnull
TEST24ab22fd42sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_param_distributions{"n_neighbors": [2, 3, 4, 5, 6, 7, 8, 9]}
TEST24ab22fd42sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_pre_dispatch"2*n_jobs"
TEST24ab22fd42sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_random_state62501
TEST24ab22fd42sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_refittrue
TEST24ab22fd42sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_return_train_scorefalse
TEST24ab22fd42sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_scoringnull
TEST24ab22fd42sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.neighbors._classification.KNeighborsClassifier)(1)_verbose0
TEST24ab22fd42sklearn.neighbors._classification.KNeighborsClassifier(1)_algorithm"auto"
TEST24ab22fd42sklearn.neighbors._classification.KNeighborsClassifier(1)_leaf_size30
TEST24ab22fd42sklearn.neighbors._classification.KNeighborsClassifier(1)_metric"minkowski"
TEST24ab22fd42sklearn.neighbors._classification.KNeighborsClassifier(1)_metric_paramsnull
TEST24ab22fd42sklearn.neighbors._classification.KNeighborsClassifier(1)_n_jobsnull
TEST24ab22fd42sklearn.neighbors._classification.KNeighborsClassifier(1)_n_neighbors5
TEST24ab22fd42sklearn.neighbors._classification.KNeighborsClassifier(1)_p2
TEST24ab22fd42sklearn.neighbors._classification.KNeighborsClassifier(1)_weights"uniform"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures