Run
9236

Run 9236

Task 801 (Learning Curve) diabetes Uploaded 25-11-2022 by Continuous Integration
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

TESTe3f1f9584asklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imput ation.Imputer,VarianceThreshold=sklearn.feature_selection.variance_threshol d.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSea rchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier))(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
TESTe3f1f9584asklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,VarianceThreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier))(1)_memorynull
TESTe3f1f9584asklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,VarianceThreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,Estimator=sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "VarianceThreshold", "step_name": "VarianceThreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "Estimator", "step_name": "Estimator"}}]
TESTe3f1f9584asklearn.preprocessing.imputation.Imputer(1)_axis0
TESTe3f1f9584asklearn.preprocessing.imputation.Imputer(1)_copytrue
TESTe3f1f9584asklearn.preprocessing.imputation.Imputer(1)_missing_values"NaN"
TESTe3f1f9584asklearn.preprocessing.imputation.Imputer(1)_strategy"median"
TESTe3f1f9584asklearn.preprocessing.imputation.Imputer(1)_verbose0
TESTe3f1f9584asklearn.feature_selection.variance_threshold.VarianceThreshold(1)_threshold0.0
TESTe3f1f9584asklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_cv3
TESTe3f1f9584asklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_error_score"raise"
TESTe3f1f9584asklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_fit_paramsnull
TESTe3f1f9584asklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_iidtrue
TESTe3f1f9584asklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_n_iter10
TESTe3f1f9584asklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_n_jobs1
TESTe3f1f9584asklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_param_distributions{"min_samples_leaf": [1, 2, 4, 8, 16, 32, 64], "min_samples_split": [2, 4, 8, 16, 32, 64, 128]}
TESTe3f1f9584asklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_pre_dispatch"2*n_jobs"
TESTe3f1f9584asklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_random_state33003
TESTe3f1f9584asklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_refittrue
TESTe3f1f9584asklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_return_train_score"warn"
TESTe3f1f9584asklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_scoringnull
TESTe3f1f9584asklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.tree.tree.DecisionTreeClassifier)(1)_verbose0
TESTe3f1f9584asklearn.tree.tree.DecisionTreeClassifier(1)_class_weightnull
TESTe3f1f9584asklearn.tree.tree.DecisionTreeClassifier(1)_criterion"gini"
TESTe3f1f9584asklearn.tree.tree.DecisionTreeClassifier(1)_max_depthnull
TESTe3f1f9584asklearn.tree.tree.DecisionTreeClassifier(1)_max_featuresnull
TESTe3f1f9584asklearn.tree.tree.DecisionTreeClassifier(1)_max_leaf_nodesnull
TESTe3f1f9584asklearn.tree.tree.DecisionTreeClassifier(1)_min_impurity_decrease0.0
TESTe3f1f9584asklearn.tree.tree.DecisionTreeClassifier(1)_min_impurity_splitnull
TESTe3f1f9584asklearn.tree.tree.DecisionTreeClassifier(1)_min_samples_leaf1
TESTe3f1f9584asklearn.tree.tree.DecisionTreeClassifier(1)_min_samples_split2
TESTe3f1f9584asklearn.tree.tree.DecisionTreeClassifier(1)_min_weight_fraction_leaf0.0
TESTe3f1f9584asklearn.tree.tree.DecisionTreeClassifier(1)_presortfalse
TESTe3f1f9584asklearn.tree.tree.DecisionTreeClassifier(1)_random_state62501
TESTe3f1f9584asklearn.tree.tree.DecisionTreeClassifier(1)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8109 ± 0.0386
Per class
0.7383 ± 0.0432
Per class
0.4175 ± 0.0983
0.3291 ± 0.0605
0.305 ± 0.026
0.4545 ± 0.0015
0.7422 ± 0.0393
768
Per class
0.7368 ± 0.0413
Per class
0.7422 ± 0.0393
0.9331 ± 0.0046
0.6711 ± 0.0566
0.4766 ± 0.0016
0.4093 ± 0.0263
0.8588 ± 0.0541
0.7033 ± 0.0515