All Supervised Regression tasks
Supervised Regression
Given a dataset with a numeric target and a set of train/test splits, e.g. generated by a cross-validation procedure, train a model and return the predictions of that model.
Inputs
estimation_procedure |
Estimation Procedure |
The estimation procedure used to validate the generated models |
required |
evaluation_measures |
String |
The evaluation measures to optimize for, e.g., cpu time, predictive_accuracy |
optional |
source_data |
Dataset |
The input data for this task |
required |
target_feature |
String |
The name of the dataset feature to be used as the target feature. |
required |
Outputs
evaluations |
KeyValue |
A list of user-defined evaluations of the task as key-value pairs. |
optional |
model |
File |
A file containing the model built on all the input data. |
optional |
predictions |
Predictions |
The desired output format |
optional |
Attribution
Author(s) | Joaquin Vanschoren, Jan van Rijn, Luis Torgo, Bernd Bischl |
Contributor(s) | Bo Gao, Simon Fischer, Venkatesh Umaashankar, Michael Berthold, Bernd Wiswedel ,Patrick Winter |