Data
car

car

active ARFF Publicly available Visibility: public Uploaded 06-04-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • study_14 study_1 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_3101 study_3818 study_4199 study_5630 study_6018 study_6532 study_9070 study_10943 study_11730 study_2921 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_5534 study_6383 study_8101 study_8102 study_11036 study_11722 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_5440 study_6381 study_7299 study_10088 study_11721 study_435 study_1598 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_8455 study_9536 study_11147 study_11722 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_3398 study_5771 study_6623 study_1723 study_2956 study_2958 study_2962 study_2964 study_2966 study_2968 study_2970 study_2971 study_2974 study_2975 study_2978 study_2979 study_2980 study_2984 study_2985 study_2988 study_2989 study_2992 study_2994 study_2996 study_2998 study_3000 study_3002 study_3003 study_3398 study_3822 study_4090 study_4734 study_9341 study_435 study_531 study_3198 study_4090 study_7533 study_2601 study_7532 study_11216 study_849 study_2735 study_3198 study_8013 study_9438 study_9903 study_11364 study_1455 study_10842 study_435 study_4199 study_11147 study_12765 study_4695
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

7 features

class (target)nominal4 unique values
0 missing
buyingnominal4 unique values
0 missing
maintnominal4 unique values
0 missing
doorsnominal4 unique values
0 missing
personsnominal3 unique values
0 missing
lug_bootnominal3 unique values
0 missing
safetynominal3 unique values
0 missing

107 properties

1728
Number of instances (rows) of the dataset.
7
Number of attributes (columns) of the dataset.
4
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
0
Number of numeric attributes.
7
Number of nominal attributes.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
2
Maximum entropy among attributes.
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of means among attributes of the numeric type.
0.15
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum kurtosis among attributes of the numeric type.
Minimum of means among attributes of the numeric type.
0.09
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of skewness among attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
0.26
Maximum mutual information between the nominal attributes and the target attribute.
3
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.17
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
10.54
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
4
The maximum number of distinct values among attributes of the nominal type.
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
2
Third quartile of entropy among attributes.
0.61
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum skewness among attributes of the numeric type.
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
Third quartile of kurtosis among attributes of the numeric type.
0.6
Average class difference between consecutive instances.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.13
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum standard deviation of attributes of the numeric type.
3.76
Percentage of instances belonging to the least frequent class.
0
Percentage of numeric attributes.
Third quartile of means among attributes of the numeric type.
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.17
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.79
Average entropy of the attributes.
65
Number of instances belonging to the least frequent class.
100
Percentage of nominal attributes.
0.23
Third quartile of mutual information between the nominal attributes and the target attribute.
0.13
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.61
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean kurtosis among attributes of the numeric type.
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1.58
First quartile of entropy among attributes.
Third quartile of skewness among attributes of the numeric type.
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.13
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean of means among attributes of the numeric type.
0.15
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of kurtosis among attributes of the numeric type.
Third quartile of standard deviation of attributes of the numeric type.
0.13
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.17
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.11
Average mutual information between the nominal attributes and the target attribute.
0.65
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of means among attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.61
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
14.67
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
0.02
First quartile of mutual information between the nominal attributes and the target attribute.
0.15
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.53
Standard deviation of the number of distinct values among attributes of the nominal type.
0.13
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
3.57
Average number of distinct values among the attributes of the nominal type.
First quartile of skewness among attributes of the numeric type.
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.13
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Mean skewness among attributes of the numeric type.
First quartile of standard deviation of attributes of the numeric type.
0.15
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.11
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
70.02
Percentage of instances belonging to the most frequent class.
Mean standard deviation of attributes of the numeric type.
1.79
Second quartile (Median) of entropy among attributes.
0.67
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
1.21
Entropy of the target attribute values.
0.75
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
1210
Number of instances belonging to the most frequent class.
1.58
Minimal entropy among attributes.
Second quartile (Median) of kurtosis among attributes of the numeric type.

11 tasks

1 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10% Holdout set - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: Test on Training Data - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: Leave one out - target_feature: class
0 runs - estimation_procedure: 20% Holdout (Ordered) - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
Define a new task